Kalan Teoremi

Bir polinom bölme işleminde bölüm ve kalan polinomlarını bulmak için önceki bölümde bahsettiğimiz bölme yöntemlerini kullanabiliriz. Sadece kalan polinomunu bulmak istediğimiz durumlarda polinom bölmesi yöntemini kullanabilecek olsak da, kalan teoremi ile çoğu zaman sonuca daha hızlı ulaşabiliriz.

Kalan teoremine göre, bir \( P(x) \) polinomunun \( x - a \) polinomuna bölümünden kalan, bu bölen polinomunu sıfır yapan \( x = a \) değerini \( P(x) \) polinomunda yerine koyduğumuzda elde ettiğimiz \( P(a) \) değeridir.

\( P(x) \) polinomunun birinci dereceden bir \( ax + b \) polinomuna bölümünden kalan ise bu bölen polinomunu sıfır yapan \( x = -\frac{b}{a} \) değerini \( P(x) \) polinomunda yerine koyduğumuzda elde ettiğimiz \( P(-\frac{b}{a}) \) değeridir.

SORU 1 :

\( P(x) = x^2 + 5x - 14 \) polinomunun aşağıda verilen polinomlara bölümünden kalan kaçtır?

(a) \( x - 4 \)

(b) \( x + 3 \)

(c) \( x + 1 \)

(a) seçeneği:

Kalan teoremine göre, \( P(x) \) polinomunun \( x - 4 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 4 \) değeri için bölünen polinomunun değeri, yani \( P(4) \) olur.

\( P(4) = 4^2 + 5(4) - 14 \)

\( = 22 \)

Buna göre, \( P(x) \) polinomunun \( x - 4 \) polinomuna bölümünden kalan \( P(4) = 22 \) olur.

(b) seçeneği:

Kalan teoremine göre, \( P(x) \) polinomunun \( x + 3 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -3 \) değeri için bölünen polinomunun değeri, yani \( P(-3) \) olur.

\( P(-3) = (-3)^2 + 5(-3) - 14 \)

\( = -20 \)

Buna göre, \( P(x) \) polinomunun \( x + 3 \) polinomuna bölümünden kalan \( P(-3) = -20 \) olur.

(c) seçeneği:

Kalan teoremine göre, \( P(x) \) polinomunun \( x + 1 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -1 \) değeri için bölünen polinomunun değeri, yani \( P(-1) \) olur.

\( P(-1) = (-1)^2 + 5(-1) - 14 \)

\( = -18 \)

Buna göre, \( P(x) \) polinomunun \( x + 1 \) polinomuna bölümünden kalan \( P(-1) = -18 \) olur.


SORU 2 :

Aşağıdaki polinom bölme işlemlerinde kalan kaçtır?

(a) \( P(x) = x^7 - 3x^6 - 6x^4 + 4x^2 + x - 27 \) polinomunun \( 19x - 57 \) ile bölümü

(b) \( P(x) = x^8 - 4x^7 + x^6 - 64x^3 + 10 \) polinomunun \( 4 - x \) ile bölümü

(c) \( P(x) = 2x^3 - 3x^2 + 2x - 4 \) polinomunun \( -3x - 6 \) ile bölümü

(a) seçeneği:

Kalan teoremine göre, \( P(x) \) polinomunun \( 19x - 57 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 3 \) değeri için bölünen polinomunun değeri, yani \( P(3) \) olur.

\( P(3) = 3^7 - 3(3)^6 - 6(3)^4 + 4(3)^2 + 3 - 27 \)

\( = -474 \)

Buna göre, \( P(x) \) polinomunun \( 19x - 57 \) polinomuna bölümünden kalan \( P(3) = -474 \) olur.

(b) seçeneği:

Kalan teoremine göre, \( P(x) \) polinomunun \( 4 - x \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 4 \) değeri için bölünen polinomunun değeri, yani \( P(4) \) olur.

\( P(4) = 4^8 - 4(4)^7 + 4^6 - 64(4)^3 + 10 \)

\( = 10 \)

Buna göre, \( P(x) \) polinomunun \( 4 - x \) polinomuna bölümünden kalan \( P(4) = 10 \) olur.

(c) seçeneği:

Kalan teoremine göre, \( P(x) \) polinomunun \( -3x - 6 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -2 \) değeri için bölünen polinomunun değeri, yani \( P(-2) \) olur.

\( P(-2) = 2(-2)^3 - 3(-2)^2 + 2(-2) - 4 \)

\( = -36 \)

Buna göre, \( P(x) \) polinomunun \( -3x - 6 \) polinomuna bölümünden kalan \( P(-2) = -36 \) olur.


SORU 3 :

\( P(x) = x^4 - 3x^3 - x^2 + 5 \) olarak veriliyor.

Aşağıdaki polinomların belirtilen polinomlara bölümünden kalan kaçtır?

(a) \( P(3 - x) \) polinomunun \( x + 5 \) ile bölümü

(b) \( P(2x - 1) \) polinomunun \( 36 - 18x \) ile bölümü

(c) \( P(3x - 19) \) polinomunun \( 28 - 4x \) ile bölümü

(a) seçeneği:

Kalan teoremine göre, \( P(3 - x) \) polinomunun \( x + 5 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -5 \) değeri için bölünen polinomunun değeri, yani \( P(3 - (-5)) = P(8) \) olur.

\( P(8) \) değerini bulalım.

\( P(8) = 8^4 - 3(8)^3 - 8^2 + 5 \)

\( = 2501 \)

Buna göre, \( P(3 - x) \) polinomunun \( x + 5 \) polinomuna bölümünden kalan \( P(8) = 2501 \) olur.

(b) seçeneği:

Kalan teoremine göre, \( P(2x - 1) \) polinomunun \( 36 - 18x \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 2 \) değeri için bölünen polinomunun değeri, yani \( P(2(2) - 1) = P(3) \) olur.

\( P(3) \) değerini bulalım.

\( P(3) = 3^4 - 3(3)^3 - 3^2 + 5 \)

\( = -4 \)

Buna göre, \( P(2x - 1) \) polinomunun \( 36 - 18x \) polinomuna bölümünden kalan \( P(3) = -4 \) olur.

(c) seçeneği:

Kalan teoremine göre, \( P(3x - 19) \) polinomunun \( 28 - 4x \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 7 \) değeri için bölünen polinomunun değeri, yani \( P(3(7) - 19) = P(2) \) olur.

\( P(2) \) değerini bulalım.

\( P(2) = 2^4 - 3(2)^3 - 2^2 + 5 \)

\( = -7 \)

Buna göre, \( P(3x - 19) \) polinomunun \( 28 - 4x \) polinomuna bölümünden kalan \( P(2) = -7 \) olur.


SORU 4 :

\( P(4x - 2) = 2x^3 - 3x^2 - 4x + 6 \) polinomu veriliyor.

\( P(x - 5) \) polinomunun \( x - 7 \) ile bölümünden kalan kaçtır?

Kalan teoremine göre, \( P(x - 5) \) polinomunun \( x - 7 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 7 \) değeri için bölünen polinomunun değeri, yani \( P(7 - 5) = P(2) \) olur.

\( P(2) \) değerini bulmak için soruda verilen polinomda parantez içini 2 yapan \( x \) değerini bulalım.

\( 4x - 2 = 2 \Longrightarrow x = 1 \)

\( P(4(1) - 2) = 2(1)^3 - 3(1)^2 - 4(1) + 6 \)

\( P(2) = 1 \) bulunur.

Buna göre, \( P(x - 5) \) polinomunun \( x - 7 \) polinomuna bölümünden kalan \( P(2) = 1 \) olur.


SORU 5 :

\( P(x + 3) = 2x^2 + 3x - a \) polinomu veriliyor.

\( P(x) \) polinomu \( x - 2 \) ile tam bölünebildiğine göre, \( P(-x + 3) \) polinomunun \( x - 5 \) ile bölümünden kalan kaçtır?

Kalan teoremine göre, \( P(x) \) polinomu \( x - 2 \) ile tam bölünebildiği için \( P(2) = 0 \) olur.

\( P(x + 3) \) polinomunda \( P(2) \)'yi elde etmek için \( x = -1 \) yazalım.

\( P(-1 + 3) = 2(-1)^2 + 3(-1) - a \)

\( P(2) = -1 - a = 0 \)

\( a = -1 \)

Buna göre \( P(x + 3) \) polinomu aşağıdaki gibi olur.

\( P(x + 3) = 2x^2 + 3x + 1 \)

Kalan teoremine göre, \( P(-x + 3) \) polinomunun \( x - 5 \) ile bölümünden kalan, bölen polinomunu sıfır yapan \( x = 5 \) değeri için bölünen polinomunun değeri, yani \( P(-5 + 3) = P(-2) \) olur.

\( P(x + 3) \) polinomunda \( P(-2) \)'yi elde etmek için \( x = -5 \) yazalım.

\( P(-5 + 3) = 2(-5)^2 + 3(-5) + 1 \)

\( P(-2) = 36 \)

Buna göre, \( P(-x + 3) \) polinomunun \( x - 5 \) polinomuna bölümünden kalan \( P(-2) = 36 \) olur.


SORU 6 :

\( a \in \mathbb{Z^+} \) olmak üzere,

\( P(x) = \dfrac{(2x - 1)^a - 1}{2(x - 1)} \) ifadesi bir polinomdur.

\( P(x) \) polinomunun katsayılar toplamı 9 olduğuna göre, \( 2x - 3 \) ile bölümünden kalan kaçtır?

İfadenin payında aşağıdaki özdeşliği kullanalım.

\( x^{n} - 1 = (x - 1)( x^{n - 1} + x^{n - 2} + \ldots + 1) \)

\( P(x) = \dfrac{(2x - 1 - 1)[(2x - 1)^{a - 1} + (2x - 1)^{a - 2} + \ldots + 1]}{2(x - 1)} \)

Pay ve paydadaki çarpanlar sadeleşir.

\( = (2x - 1)^{a - 1} + (2x - 1)^{a - 2} + \ldots + 1 \)

\( P(x) \) polinomunun katsayılar toplamı \( x = 1 \) yazdığımızda bulduğumuz \( P(1) \) değeridir.

\( P(1) = 1^{a - 1} + 1^{a - 2} + \ldots + 1 = 9 \)

\( a = 9 \)

\( P(x) = \dfrac{(2x - 1)^9 - 1}{2(x - 1)} \)

Kalan teoremine göre, \( P(x) \) polinomunun \( 2x - 3 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = \frac{3}{2} \) değeri için bölünen polinomunun değeri, yani \( P(\frac{3}{2}) \) olur.

\( P(\frac{3}{2}) = \dfrac{(2 \cdot \frac{3}{2} - 1)^9 - 1}{2(\frac{3}{2} - 1)} = 511 \) bulunur.


SORU 7 :

\( k \in \mathbb{R} \) olmak üzere,

\( P(x) = x^3 + 6x^2 - 4x - 23 \) polinomunun \( x - k \) ile bölümünden kalan 1'dir.

Buna göre \( k \)'nın alabileceği değerleri bulunuz.

Kalan teoremine göre, \( P(x) \) polinomunun \( x - k \) ile bölümünden kalan, bu bölen polinomunu sıfır yapan \( x = k \) değerini \( P(x) \) polinomunda yerine koyduğumuzda elde ettiğimiz \( P(k) \) değeridir.

\( P(k) = k^3 + 6k^2 - 4k - 23 = 1 \)

\( k^3 + 6k^2 - 4k - 24 = 0 \)

Elde ettiğimiz denklemi çarpanlarına ayıralım.

\( k^2(k + 6) - 4(k + 6) = 0 \)

\( (k + 6)(k^2 - 4) = 0 \)

\( (k + 6)(k - 2)(k + 2) = 0 \)

\( k \)'nın alabileceği değerler yukarıdaki çarpanları sıfır yapan değerlerdir.

\( k \in \{-6, -2, 2\} \) bulunur.


SORU 8 :

\( P(x) = 2x^3 + ax + 4 \) polinomu veriliyor.

\( P(x + 1) \) polinomunun \( x + 1 \) ile bölümünden kalan ile \( P(x - 1) \) polinomunun \( x + 2 \) ile bölümünden kalan aynı olduğuna göre, \( a \) kaçtır?

Kalan teoremine göre, \( P(x + 1) \) polinomunun \( x + 1 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -1 \) değeri için bölünen polinomunun değeri, yani \( P(-1 + 1) = P(0) \) olur.

Kalan teoremine göre, \( P(x - 1) \) polinomunun \( x + 2 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -2 \) değeri için bölünen polinomunun değeri, yani \( P(-2 - 1) = P(-3) \) olur.

Bu iki kalan değeri birbirine eşittir.

\( P(0) = P(-3) \)

\( 2(0)^3 + a(0) + 4 = 2(-3)^3 + a(-3) + 4 \)

\( 4 = -54 - 3a + 4 \)

\( a = -18 \) bulunur.


SORU 9 :

\( k \in \mathbb{Z} \) olmak üzere,

\( P(x) = 9x^2 - 6x + 1 \) polinomunun \( x - k \) ile bölümünden kalan, \( x - \frac{k}{3} \) ile bölümünden kalana eşittir.

Buna göre \( k \)'nın alabileceği değerleri bulunuz.

Kalan teoremine göre, \( P(x) \) polinomunun \( x - k \) ile bölümünden kalan, bu bölen polinomunu sıfır yapan \( x = k \) değerini \( P(x) \) polinomunda yerine koyduğumuzda elde ettiğimiz \( P(k) \) değeridir.

\( P(x) \) polinomunun \( x - k \) ile bölümünden kalan \( P(k) \) olur.

\( P(k) = 9k^2 - 6k + 1 \)

\( P(x) \) polinomunun \( x - \frac{k}{3} \) ile bölümünden kalan \( P(\frac{k}{3}) \) olur.

\( P(\frac{k}{3}) = 9(\frac{k}{3})^2 - 6(\frac{k}{3}) + 1 \)

\( = k^2 - 2k + 1 \)

Bu iki bölme işleminde kalanlar birbirine eşittir.

\( 9k^2 - 6k + 1 = k^2 - 2k + 1 \)

Tüm terimleri eşitliğin aynı tarafında toplayalım.

\( 8k^2 - 4k = 0 \)

\( 4k(2k - 1) = 0 \)

\( k \)'nın alabileceği değerler bu denklemin çarpanlarını sıfır yapan tam sayı değerlerdir.

\( k = 0 \) bulunur.


SORU 10 :

\( a \in \mathbb{R} \) olmak üzere,

\( P(x) = x^2 - 2x + 3 \) polinomu veriliyor.

\( P(x) \) polinomunun \( x - a \) ile bölümünden kalan, \( x + a \) ile bölümünden kalanın 3 katı olduğuna göre, \( a \)'nın alabileceği değerleri bulunuz.

Kalan teoremine göre, \( P(x) \) polinomunun \( x - k \) ile bölümünden kalan, bu bölen polinomunu sıfır yapan \( x = k \) değerini \( P(x) \) polinomunda yerine koyduğumuzda elde ettiğimiz \( P(k) \) değeridir.

\( P(x) \) polinomunun \( x - a \) ile bölümünden kalan \( P(a) \) olur.

\( P(a) = a^2 - 2a + 3 \)

\( P(x) \) polinomunun \( x + a \) ile bölümünden kalan \( P(-a) \) olur.

\( P(-a) = (-a)^2 - 2(-a) + 3 \)

\( = a^2 + 2a + 3 \)

\( P(a) \) değeri \( P(-a) \)'nın 3 katıdır.

\( P(a) = 3P(-a) \)

\( a^2 - 2a + 3 = 3(a^2 + 2a + 3) \)

\( a^2 - 2a + 3 = 3a^2 + 6a + 9 \)

Tüm terimleri eşitliğin aynı tarafında toplayalım.

\( 2a^2 + 8a + 6 = 0 \)

\( 2(a + 3)(a + 1) = 0 \)

\( a \)'nın alabileceği değerler her bir çarpanı sıfır yapan değerlerdir.

\( a \in \{-3, -1\} \)


SORU 11 :

\( \dfrac{x \cdot P(x) - 2Q(x - 3)}{2x + 1} = 5x - 2 \) ve

\( P(x) \)'in \( x - 2 \)'ye bölümünden kalan 1 ise \( Q(x + 4) \)'ün \( x + 5 \) ile bölümünden kalan kaçtır?

Kalan teoremine göre \( P(x) \) polinomunun \( x - 2 \)'ye bölümünden kalan 1 ise \( P(2) = 1 \) olur.

Verilen eşitlikte \( x = 2 \) yazalım.

\( \dfrac{2 \cdot P(2) - 2Q(2 - 3)}{2(2) + 1} = 5(2) - 2 \)

\( \dfrac{2 \cdot 1 - 2Q(-1)}{5} = 8 \)

\( Q(-1) = -19 \)

Kalan teoremine göre, \( Q(x + 4) \) polinomunun \( x + 5 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -5 \) değeri için bölünen polinomunun değeri, yani \( Q(-5 + 4) = Q(-1) \) olur.

Buna göre istenen kalan değeri \( Q(-1) = -19 \) olarak bulunur.


SORU 12 :

\( P(x) = x^3 - 9x \) ve \( Q(x) = x^3 - 3x^2 \) polinomları için aşağıdaki eşitlik veriliyor.

\( EKOK(P(x), Q(x)) = EBOB(P(x), Q(x)) \cdot B(x) + K(x) \)

Buna göre \( B(x) + K(x) \) polinomunun \( x - 2 \) ile bölümünden kalan kaçtır?

Verilen polinomları çarpanlarına ayıralım.

\( P(x) = x(x - 3)(x + 3) \)

\( Q(x) = x^2(x - 3) \)

İki polinomun EBOB'u iki polinomdaki ortak çarpanları içerir.

\( EBOB(P(x), Q(x)) = x(x - 3) \)

İki polinomun EKOK'u iki polinomdaki tüm çarpanları tekrarsız şekilde içerir.

\( EKOK(P(x), Q(x)) = x^2(x - 3)(x + 3) \)

Bu ifadeleri verilen eşitlikte yerine koyalım.

\( EKOK(P(x), Q(x)) = EBOB(P(x), Q(x)) \cdot B(x) + K(x) \)

\( x^2(x - 3)(x + 3) = x(x - 3) \cdot B(x) + K(x) \)

Buna göre \( B(x) = x(x + 3) \) ve \( K(x) = 0 \) olur.

Kalan teoremine göre, \( B(x) + K(x) = x(x + 3) \) polinomunun \( x - 2 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 2 \) değeri için bölünen ifadenin değeri olur.

\( 2(2 + 3) = 10 \) bulunur.


SORU 13 :

\( P(x + 2) \) polinomunun \( P(x - 2) \) ile bölümünden kalan 10'dur.

Buna göre \( P(2x + 3) \) polinomunun tek dereceli terimlerinin katsayılar toplamı kaçtır?

\( P(2x + 3) \) polinomunun tek dereceli terimlerinin katsayılar toplamı formülünde \( x = 1 \) yazalım.

\( = \dfrac{P(2(1) + 3) - P(2(-1) + 3)}{2} = \dfrac{P(5) - P(1)}{2} \)

\( P(x + 2) = P(x - 2) \cdot Q(x) + 10 \) bölme işleminde polinomlardaki \( x \)'lerin katsayıları aynı olduğu için \( Q(x) = 1 \) olmalıdır.

\( P(x + 2) = P(x - 2) + 10 \)

\( P(x + 2) - P(x - 2) = 10 \)

\( x = 3 \) yazalım.

\( P(3 + 2) - P(3 - 2) = P(5) - P(1) = 10 \)

Buna göre \( P(2x + 3) \) polinomunun tek dereceli terimlerinin katsayılar toplamı \( \frac{P(5) - P(1)}{2} = \frac{10}{2} = 5 \) olur.


SORU 14 :

\( P(x) = 2 - 6x + 10x^2 - 14x^3 + \ldots - 198x^{49} \) ise,

\( P(x) \) polinomunun \( x - 1 \) ile bölümünden kalan kaçtır?

Kalan teoremine göre, \( P(x) \) polinomunun \( x - 1 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 1 \) değeri için bölünen polinomunun değeri, yani \( P(1) \) olur.

\( P(1) \) değerini bulmak için \( x = 1 \) yazalım.

\( P(x) = 2 - 6 + 10 - 14 + \ldots - 198 \)

Daha rahat hesaplama yapmak için ifadeyi 2 parantezine alalım.

\( = 2(1 - 3 + 5 - 7 + \ldots - 99) \)

Parantez içindeki terimleri 2'şerli gruplayalım.

\( = 2((1 - 3) + (5 - 7) + (9 - 11) + \ldots + (97 - 99)) \)

Her grubun değeri \( -2 \)'ye eşittir.

\( = 2((-2) + (-2) + (-2) + \ldots + (-2)) \)

Terim sayısı formülünü kullanarak \( -2 \) terimlerinin sayısını bulalım. Terim sayısını bulurken parantez içindeki ilk terimler olan 1, 5, 9, ..., 97 sayılarını referans alalım.

\( \text{Terim sayısı} = \dfrac{\text{Son terim} - \text{İlk terim}}{\text{Artış miktarı}} + 1 \)

\( \dfrac{97 - 1}{4} + 1 = 25 \)

\( = 2 \cdot 25 \cdot (-2) = -100 \) bulunur.


SORU 15 :

\( p(x) = ax^3 + bx^2 + cx + d \) polinom fonksiyonunun katsayıları rastgele ve birbirinden farklı olmak üzere 4, 5, 6, 7 değerlerini alıyor.

\( p(x) \)'in \( x + 3 \) ile bölümünden kalan \( M \), \( x + 4 \) ile bölümünden kalan \( N \) olduğuna göre, \( M - N \) ifadesinin en küçük değeri kaçtır?

Kalan teoremine göre, bir \( P(x) \) polinomunun \( x - a \) polinomuna bölümünden kalan bu bölen polinomunu sıfır yapan \( x = a \) değerini \( P(x) \) polinomunda yerine koyduğumuzda elde ettiğimiz \( P(a) \) değeridir.

Buna göre \( p(x) \)'in \( x + 3 \) ile bölümünden kalan \( p(-3) \), \( x + 4 \) ile bölümünden kalan \( p(-4) \) olur.

\( M = p(-3) = a(-3)^3 + b(-3)^2 + c(-3) + d \)

\( = -27a + 9b - 3c + d \)

\( N = p(-4) = a(-4)^3 + b(-4)^2 + c(-4) + d \)

\( = -64a + 16b - 4c + d \)

\( M - N \) ifadesini bulalım.

\( M - N = -27a + 9b - 3c + d - (-64a + 16b - 4c + d) \)

\( = 37a - 7b + c \)

\( M - N \) ifadesinin en küçük değerini alması için en büyük katsayıya sahip \( a \) en küçük değeri almalıdır.

Aynı şekilde en küçük katsayıya sahip \( b \) en büyük değeri almalıdır.

Bu durumda \( a = 4 \) ve \( b = 7 \) olur. \( c \) de geriye kalan 5 ve 6 değerlerinden küçük olan değeri alır.

\( c = 5, \quad d = 6 \)

\( M - N = 37 \cdot 4 - 7 \cdot 7 + 5 = 104 \) bulunur.

Yüksek Dereceden Bölenler

Bölen polinomunun daha yüksek dereceden olduğu ve birden fazla çarpana ayrılabildiği bölme işlemlerinde de kalan teoremini kullanabiliriz.

SORU 16 :

\( P(x) \) polinomunun \( (x - 2)^3 \) polinomuna bölümünden kalan \( 3x^2 + 2x + 6 \) ise \( x - 2 \) polinomuna bölümünden kalan kaçtır?

Soruda verilen bölme işlemini yazalım.

\( P(x) = (x - 2)^3 \cdot Q(x) + 3x^2 + 2x + 6 \)

Kalan teoremine göre, \( P(x) \) polinomunun \( x - 2 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 2 \) değeri için bölünen polinomunun değeri, yani \( P(2) \) olur.

Soruda verilen bölme işleminde bölen \( x - 2 \)'nin bir kuvveti olduğu için bölme işleminde \( x = 2 \) yazarak ve işlemin kalan polinomu dışındaki kısmını sıfırlayarak \( P(2) \) değerini bulabiliriz.

\( P(2) = (2 - 2)^3 \cdot Q(2) + 3(2)^2 + 2(2) + 6 \)

\( = 0 + 12 + 4 + 6 = 22 \) bulunur.

Buna göre, \( P(x) \) polinomunun \( x - 2 \) polinomuna bölümünden kalan \( P(2) = 22 \) olur.


SORU 17 :

\( P(x - 4) \) polinomunun \( x^2 - 8x + 12 \) ile bölümünden kalan \( 4x - 1 \)'dir.

Buna göre \( P(x + 2) \) polinomunun \( x + 4 \) ile bölümünden kalan kaçtır?

Soruda verilen bölme işlemini yazalım.

\( P(x - 4) = (x^2 - 8x + 12) \cdot Q(x) + 4x - 1 \)

İkinci dereceden bölen polinomunun çarpanlarına ayrıldığını görebiliriz.

\( P(x - 4) = (x - 2)(x - 6) \cdot Q(x) + 4x - 1 \)

Kalan teoremine göre, \( P(x + 2) \) polinomunun \( x + 4 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -4 \) değeri için bölünen polinomunun değeri, yani \( P(-4 + 2) = P(-2) \) olur.

Soruda verilen bölme işleminde bölenin çarpanlarından biri \( x - 2 \) olduğu için, bölme işleminde \( x = 2 \) yazarak ve işlemin kalan polinomu dışındaki kısmını sıfırlayarak \( P(-2) \) değerini bulabiliriz.

\( P(2 - 4) = (2 - 2)(2 - 6) \cdot Q(2) + 4(2) - 1 \)

\( P(-2) = 0 + 8 - 1 = 7 \) bulunur.

Buna göre, \( P(x + 2) \) polinomunun \( x + 4 \) polinomuna bölümünden kalan \( P(-2) = 7 \) olur.


SORU 18 :

\( P(x) \) polinomunun \( 3x^2 - 10x - 8 \) ile bölümünden kalan \( 3x + 5 \) ise \( 3x + 2 \) ile bölümünden kalan kaçtır?

Soruda verilen bölme işlemini yazalım.

\( P(x) = (3x^2 - 10x - 8) \cdot Q(x) + 3x + 5 \)

İkinci dereceden bölen polinomunun çarpanlarına ayrıldığını görebiliriz.

\( P(x) = (3x + 2)(x - 4) \cdot Q(x) + 3x + 5 \)

Kalan teoremine göre, \( P(x) \) polinomunun \( 3x + 2 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = -\frac{2}{3} \) değeri için bölünen polinomunun değeri, yani \( P(-\frac{2}{3}) \) olur.

Soruda verilen bölme işleminde bölenin çarpanlarından biri \( 3x + 2 \) olduğu için, bölme işleminde \( x = -\frac{2}{3} \) yazarak ve işlemin kalan polinomu dışındaki kısmını sıfırlayarak \( P(-\frac{2}{3}) \) değerini bulabiliriz.

\( P(-\frac{2}{3}) = (3(-\frac{2}{3}) + 2)(-\frac{2}{3} - 4) \cdot Q(-\frac{2}{3}) + 3(-\frac{2}{3}) + 5 \)

\( = (-2 + 2) \cdot (-\frac{2}{3} - 4) \cdot Q(-\frac{2}{3}) + (-2) + 5 \)

\( = 0 + 3 = 3 \) bulunur.

Buna göre, \( P(x) \) polinomunun \( 3x + 2 \) polinomuna bölümünden kalan \( P(-\frac{2}{3}) = 3 \) olur.


SORU 19 :

\( P(x + 7) = (x^2 - 2x - 3) \cdot Q(x) + 2x^2 + x + 1 \) olduğuna göre,

\( P(x + 1) \) polinomunun \( x - 5 \) ile bölümünden kalan kaçtır?

Soruda verilen bölme işleminde bölen polinomunu çarpanlarına ayıralım.

\( P(x + 7) = (x + 1)(x - 3) \cdot Q(x) + 2x^2 + x + 1 \)

Kalanı sorulan bölme işlemini aşağıdaki şekilde yazabiliriz.

\( P(x + 1) = (x - 5) \cdot Q(x) + K(x) \)

Kalan teoremine göre, \( P(x + 1) \) polinomunun \( x - 5 \) polinomuna bölümünden kalan, bölen polinomunu sıfır yapan \( x = 5 \) değeri için bölünen polinomunun değeri, yani \( P(5 + 1) = P(6) \) olur.

\( P(6) \) değerini bulmak için soruda verilen polinomda \( x = -1 \) yazalım. Bu değer bölme işleminin kalan polinomu dışındaki kısmını da sıfır yapar.

\( P(-1 + 7) = 0 \cdot Q(x) + 2(-1)^2 + (-1) + 1 \)

\( P(6) = 2 \) bulunur.

Buna göre, \( P(x + 1) \) polinomunun \( x - 5 \) polinomuna bölümünden kalan \( P(6) = 2 \) olur.


SORU 20 :

\( P(x) \) polinomunun \( x - 3 \) polinomuna bölümünden kalan \( 7 \), \( x + 3 \) polinomuna bölümünden kalan \( -5 \)'tir.

Buna göre, \( P(x) \) polinomunun \( x^2 - 9 \) polinomuna bölümünden kalan nedir?

Kalan teoremine göre, \( P(x) \) polinomunun \( x - 3 \) polinomuna bölümünden kalan 7 ise \( P(3) = 7 \) olur.

Benzer şekilde, \( P(x) \) polinomunun \( x + 3 \) polinomuna bölümünden kalan -5 ise \( P(-3) = -5 \) olur.

\( P(x) \) polinomunun ikinci dereceden \( x^2 - 9 \) polinomuna bölümünden kalan, bölen polinomunun derecesinden daha düşük dereceden \( K(x) = ax + b \) şeklinde bir polinom olacaktır.

Soruda verilen bölme işlemini yazalım.

\( P(x) = B(x) \cdot Q(x) + K(x) \)

\( P(x) = (x^2 - 9) \cdot Q(x) + ax + b \)

Bu bölme işleminde bölenin çarpanlarının soruda verilen iki bölme işleminin bölenleri olduğunu görebiliriz.

\( P(x) = (x - 3)(x + 3) \cdot Q(x) + ax + b \)

Kalan polinomunda bilinmeyen \( a \) ve \( b \) değerlerini \( P(3) \) ve \( P(-3) \) değerlerini kullanarak bulabiliriz.

\( P(3) = (3 - 3)(3 + 3) \cdot Q(3) + a(3) + b \)

\( = 3a + b = 7 \)

\( P(-3) = (-3 - 3)(-3 + 3) \cdot Q(-3) + a(-3) + b \)

\( = -3a + b = -5 \)

Bu iki denklemi ortak çözdüğümüzde aşağıdaki değerleri buluruz.

\( a = 2, \quad b = 1 \)

\( K(x) = ax + b = 2x + 1 \)

Buna göre, \( P(x) \) polinomunun \( x^2 - 9 \) polinomuna bölümünden kalan \( 2x + 1 \) polinomudur.


SORU 21 :

\( P(x) \) polinomunun \( x - 4 \) polinomuna bölümünden kalan 15, \( x + 2 \) polinomuna bölümünden kalan -3'tür.

Buna göre, \( P(x) \) polinomunun \( x^2 - 2x - 8 \) polinomuna bölümünden kalan nedir?

Kalan teoremine göre, \( P(x) \) polinomunun \( x - 4 \) polinomuna bölümünden kalan 15 ise \( P(4) = 15 \) olur.

Benzer şekilde, \( P(x) \) polinomunun \( x + 2 \) polinomuna bölümünden kalan -3 ise \( P(-2) = -3 \) olur.

\( P(x) \) polinomunun ikinci dereceden \( x^2 - 2x - 8 \) polinomuna bölümünden kalan, bölen polinomunun derecesinden daha düşük dereceden \( K(x) = ax + b \) şeklinde bir polinom olacaktır.

Soruda verilen bölme işlemini yazalım.

\( P(x) = B(x) \cdot Q(x) + K(x) \)

\( P(x) = (x^2 - 2x - 8) \cdot Q(x) + ax + b \)

Bu bölme işleminde bölenin çarpanlarının soruda verilen iki bölme işleminin bölenleri olduğunu görebiliriz.

\( P(x) = (x - 4)(x + 2) \cdot Q(x) + ax + b \)

Kalan polinomunda bilinmeyen \( a \) ve \( b \) değerlerini \( P(4) \) ve \( P(-2) \) değerlerini kullanarak bulabiliriz.

\( P(4) = (4 - 4)(4 + 2) \cdot Q(4) + a(4) + b \)

\( = 4a + b = 15 \)

\( P(-2) = (-2 - 4)(-2 + 2) \cdot Q(-2) + a(-2) + b \)

\( = -2a + b = -3 \)

Bu iki denklemi ortak çözdüğümüzde aşağıdaki değerleri buluruz.

\( a = 3, \quad b = 3 \)

\( K(x) = ax + b = 3x + 3 \)

Buna göre, \( P(x) \) polinomunun \( x^2 - 2x - 8 \) polinomuna bölümünden kalan \( 3x + 3 \) polinomudur.


SORU 22 :

\( P(x) \) polinomunun \( x^2 - 1 \) ile bölümünden kalan \( x + 3 \), \( x^2 - 9 \) ile bölümünden kalan \( 3x + 1 \) polinomudur.

Buna göre, \( P(x) \) polinomunun \( x^2 + 2x - 3 \) ile bölümünden kalan nedir?

Soruda verilen bölme işlemlerini yazalım.

\( P(x) = (x^2 - 1) \cdot Q_1(x) + x + 3 \)

\( P(x) = (x^2 - 9) \cdot Q_2(x) + 3x + 1 \)

İki işlemde de bölen polinomlarını çarpanlarına ayıralım.

\( P(x) = (x - 1)(x + 1) \cdot Q_1(x) + x + 3 \)

\( P(x) = (x - 3)(x + 3) \cdot Q_2(x) + 3x + 1 \)

Kalanı istenen bölme işlemini yazalım.

\( P(x) \) polinomunun ikinci dereceden \( x^2 + 2x - 3 \) polinomuna bölümünden kalan, bölen polinomunun derecesinden daha düşük dereceden \( K(x) = ax + b \) şeklinde bir polinom olacaktır.

\( P(x) = (x^2 + 2x - 3) \cdot Q_3(x) + ax + b \)

Bu işlemde de bölen polinomunu çarpanlarına ayıralım.

\( P(x) = (x - 1)(x + 3) \cdot Q_3(x) + ax + b \)

Üçüncü bölme işlemindeki bölen polinomunun çarpanlarından \( (x - 1) \)'in birinci bölme işleminin böleninin, \( (x - 3) \)'ün de ikinci bölme işleminin böleninin bir çarpanı olduğunu görüyoruz. Dolayısıyla soruda istenen \( ax + b \) polinomunu bulmak için bölen polinomunu sıfır yapacak iki \( x \) değeri için polinom değerlerini ilk iki bölme işlemini kullanarak bulabiliriz.

Birinci bölme işleminde \( x = 1 \) yazalım.

\( P(1) = (1 - 1)(1 + 1) \cdot Q_1(1) + 1 + 3 \)

\( = 4 \)

İkinci bölme işleminde \( x = -3 \) yazalım.

\( P(-3) = (-3 - 3)(-3 + 3) \cdot Q_2(-3) + 3(-3) + 1 \)

\( = -8 \)

Elde ettiğimiz bu iki polinom değerini üçüncü bölme işleminde yerine koyalım.

\( P(1) = (1 + 3)(1 - 1) \cdot Q_3(1) + a(1) + b \)

\( = a + b = 4 \)

\( P(-3) = (-3 + 3)(-3 - 1) \cdot Q_3(-3) + a(-3) + b \)

\( = -3a + b = -8 \)

Bu iki denklemi ortak çözdüğümüzde aşağıdaki değerleri buluruz.

\( a = 3, \quad b = 1 \)

\( K(x) = ax + b = 3x + 1 \)

Buna göre, \( P(x) \) polinomunun \( x^2 + 2x - 3 \) polinomuna bölümünden kalan \( 3x + 1 \) polinomudur.


SORU 23 :

\( P(x) \) polinomunun \( x^2 + 2 \) ile bölümünden kalan \( 2x - 1 \) olduğuna göre, \( P^2(x) \) polinomunun \( x^2 + 2 \) ile bölümünden kalan kaçtır?

Sorudaki birinci bölme işlemini yazalım.

\( P(x) = (x^2 + 2) \cdot Q(x) + 2x - 1 \)

Sorudaki ikinci bölme işlemini yazalım.

\( P^2(x) = [(x^2 + 2) \cdot Q(x) + (2x - 1)]^2 \)

Parantez karesi ifadesinin açılımını yazalım.

\( = [(x^2 + 2) \cdot Q(x)]^2 \) \( + 2(x^2 + 2) \cdot Q(x) \cdot (2x - 1) \) \( + (2x - 1)^2 \)

Bu açılımda 1. ve 2. terimler \( x^2 + 2 \) çarpanını içerdiği için bu çarpana tam bölünür.

\( \dfrac{P^2(x)}{x^2 + 2} = (x^2 + 2) \cdot Q^2(x) + 2Q(x) \cdot (2x - 1) + \dfrac{(2x - 1)^2}{x^2 + 2} \)

Dolayısıyla \( P^2(x) \) polinomunun \( x^2 + 2 \) polinomuna bölümünden kalan son terimin \( x^2 + 2 \) polinomuna bölümünden kalana eşittir.

\( (2x - 1)^2 = 4x^2 - 4x + 1 \) polinomunu \( x^2 + 2 \) polinomuna polinom bölmesi ile böldüğümüzde \( -4x - 7 \) kalanını buluruz.

\( 4x^2 - 4x + 1 = (x^2 + 2) \cdot 4 - 4x - 7 \)

\( K(x) = -4x - 7 \) bulunur.


SORU 24 :

\( P(x) \) polinomunun \( x - 2 \) ile bölümünden kalan 24, \( x + 2 \) ile bölümünden kalan 8, \( (x + 1)^3 \) ile bölümünden kalan \( 3x^2 + x + 5 \) olduğuna göre,

\( P(x) \) polinomunun \( (x - 2)(x + 2)(x + 1) \) ile bölümünden kalan kaçtır?

Kalan teoremine göre, bir \( P(x) \) polinomunun \( x - k \) ile bölümünden kalan, bu bölen polinomunu sıfır yapan \( x = k \) değerini \( P(x) \) polinomunda yerine koyduğumuzda elde ettiğimiz \( P(k) \) değeridir.

\( P(x) \) polinomunun \( x - 2 \) ile bölümünden kalan \( P(2) \), \( x + 2 \) ile bölümünden kalan \( P(-2) \) olur.

\( P(2) = 24 \)

\( P(-2) = 8 \)

Verilen üçüncü bölme işlemini yazalım.

\( P(x) = (x + 1)^3 \cdot Q_3(x) + 3x^2 + x + 5 \)

Eşitlikte \( x = -1 \) yazalım.

\( P(-1) = 0 + 3(-1)^2 + (-1) + 5 = 7 \)

Bir polinom bölme işleminde kalan polinomunun derecesi bölen polinomunun derecesinden küçük olur.

\( (x - 2)(x + 2)(x + 1) \) üçüncü dereceden bir polinom olduğu için, \( P(x) \) polinomunun bu polinoma bölümünde kalan en çok 2. dereceden olabilir.

\( P(x) = (x - 2)(x + 2)(x + 1) \cdot Q(x) + Ax^2 + Bx + C \)

Bu bölme işleminde \( Q(x) \) içeren terimi sıfır yapacak üç \( x \) değeri için \( P(x) \) değerini yukarıda bulmuştuk.

\( x \) yerine sırayla 2, -2 ve -1 koyarak \( A \), \( B \) ve \( C \) değerlerini bulalım.

\( P(2) = 0 \cdot 4 \cdot 3 \cdot Q(2) + A(2)^2 + B(2) + C \)

\( 4A + 2B + C = 24 \)

\( P(-2) = -4 \cdot 0 \cdot (-1) \cdot Q(-2) + A(-2)^2 + B(-2) + C \)

\( 4A - 2B + C = 8 \)

\( P(-1) = -3 \cdot 1 \cdot 0 \cdot Q(-1) + A(-1)^2 + B(-1) + C \)

\( A - B + C = 7 \)

\( B \) değerini bulmak için 1. denklemden 2. denklemi taraf tarafa çıkaralım.

\( (4A + 2B + C) - (4A - 2B + C) = 24 - 8 \)

\( 4B = 16 \)

\( B = 4 \)

2. ve 3. denklemde \( B \) değerini yerine yazalım ve denklemleri birbirinden çıkaralım.

\( 4A + C = 16 \)

\( A + C = 11 \)

\( (4A + C) - (A + C) = 16 - 11 \)

\( A = \dfrac{5}{3} \)

\( A \) ve \( B \) değerlerini 3. denklemde yerine koyalım.

\( \dfrac{5}{3} - 4 + C = 7 \)

\( C = \dfrac{28}{3} \)

\( P(x) \) polinomunun \( (x - 2)(x + 2)(x + 1) \) ile bölümünden kalan:

\( Ax^2 + Bx + C = \dfrac{5}{3}x^2 + 4x + \dfrac{28}{3} \) bulunur.

Yerine Koyma Yöntemi

Bir \( P(x) \) polinomunun \( k. \) dereceden \( B(x) \) polinomuna bölümünde kalan olan \( K(x) \) polinomunu bulmak için kullanabileceğimiz bir diğer yöntem aşağıdaki gibidir.

  • \( B(x) \) polinomunu sıfıra eşitlenir ve polinomun en yüksek \( k. \) dereceden terimi yalnız bırakılıp diğer tüm terimler eşitliğin diğer tarafına atılır.
  • Elde edilen \( k. \) dereceden bu ifade bölünen polinomunda derecesi \( k \) ya da daha yüksek olan terimlerde yerine konur.
  • Bu işlem sonucunda hala derecesi \( k \) ya da daha yüksek olan terimler varsa aynı işleme tüm terimlerin derecesi \( k \)'dan küçük kalana kadar devam edilir.
  • Bu işlem sonucunda kalan polinom \( K(x) \) kalan polinomudur.

Bu yöntemin bir örnek üzerinde uygulamasını yapalım.

SORU 25 :

\( P(x) = 2x^{11} + 3x^4 + ax^3 - bx^2 + 2c + a \) polinomu veriliyor.

\( P(x) \) polinomunun \( x^3 + 1 \) ile bölümünden kalan \( -6x^2 - 3x + 2 \) polinomu olduğuna göre, \( b + c \) değeri kaçtır?

Soruda verilen bölme işlemini yazalım.

\( P(x) = B(x) \cdot Q(x) + K(x) \)

\( P(x) = (x^3 + 1) \cdot Q(x) - 6x^2 - 3x + 2 \)

Kalan polinomunu bulmak için bölen polinomunu sıfıra eşitleyip en yüksek dereceli terimi yalnız bırakalım.

\( x^3 + 1 = 0 \)

\( x^3 = -1 \)

\( P(x) \) polinomunda derecesi 3 ve 3'ün tam sayı katı olan ifadelerde \( x^3 = -1 \) yazarak kalan polinomunu bulalım.

\( K(x) = 2(x^3)^3x^2 + 3x^3x + ax^3 - bx^2 + 2c + a \)

\( = 2(-1)^3x^2 + 3(-1)x + a(-1) - bx^2 + 2c + a \)

\( = -2x^2 - 3x - a - bx^2 + 2c + a \)

\( = (-2 - b)x^2 - 3x + 2c \)

Bu polinomu soruda verilen polinoma eşitleyelim.

\( (-2 - b) x^2 - 3x + 2c = -6x^2 - 3x + 2 \)

İki polinomun eşitliğinde dereceleri aynı olan terimlerin katsayıları ve sabit terimler ayrı ayrı birbirine eşittir.

\( -2 - b = -6 \Longrightarrow b = 4 \)

\( 2c = 2 \Longrightarrow c = 1 \)

\( b + c = 4 + 1 = 5 \) bulunur.


SORU 26 :

\( P(x) = 2x^4 - x^3 + 2x^2 + 3x - 7 \) polinomu veriliyor.

\( P(x) \) polinomunun \( x^2 + x - 1 \) ile bölümünden kalan nedir?

Polinom bölmesi yapmak yerine bölen polinomunu sıfıra eşitleyip en yüksek dereceli terimi yalnız bırakalım.

\( x^2 + x - 1 = 0 \)

\( x^2 = 1 - x \)

\( P(x) \) polinomunda \( x^2 = 1 - x \) yazarak kalan polinomunu bulalım.

\( K(x) = 2(x^2)^2 - x^2 \cdot x + 2x^2 + 3x - 7 \)

\( K(x) = 2(1 - x)^2 - (1 - x)x + 2(1 - x) + 3x - 7 \)

\( = 2 - 4x + 2x^2 - x + x^2 + 2 - 2x + 3x - 7 \)

\( = 3x^2 - 4x - 3 \)

Elde ettiğimiz ifade hala \( x^2 \)'li terim içerdiği için tekrar \( x^2 = 1 - x \) yazalım.

\( = 3(1 - x) - 4x - 3 \)

\( = -7x \)

Buna göre \( P(x) \) polinomunun \( x^2 + x - 1 \) ile bölümünden kalan \( K(x) = -7x \) polinomudur.


SORU 27 :

\( P(x) \) polinomunun \( x^3 + 1 \) ile bölümünden kalan \( x^2 + 2x + 4 \) polinomudur.

Buna göre, \( P(x) \) polinomunun \( x^2 - x + 1 \) ile bölümünden kalan nedir?

Soruda verilen birinci bölme işlemini yazalım.

\( P(x) = (x^3 + 1) \cdot Q(x) + x^2 + 2x + 4 \)

Bölen polinomunu küp toplamı özdeşliğini kullanarak çarpanlarına ayıralım.

\( P(x) = (x + 1)(x^2 - x + 1) \cdot Q(x) + x^2 + 2x + 4 \)

Kalan polinomunu bulmak için bölen polinomunu sıfıra eşitleyip en yüksek dereceli terimi yalnız bırakalım.

\( x^2 - x + 1 = 0 \)

\( x^2 = x - 1 \)

Yukarıdaki bölme işleminde \( x^2 = x - 1 \) koyarak kalan polinomunu bulalım.

\( K(x) = (x + 1)(x^2 – x + 1) \cdot Q(x) + x^2 + 2x + 4 \)

\( = (x + 1)((x - 1) - x + 1) \cdot Q(x) + (x - 1) + 2x + 4 \)

\( = 3x + 3 \)

Buna göre \( P(x) \) polinomunun \( x^2 - x + 1 \) ile bölümünden kalan \( K(x) = 3x + 3 \) polinomudur.


SORU 28 :

\( P(x) = 7x^{33} + 2x^{13} + x^6 - 4x^4 + 5 \) polinomunun \( x^2 + x + 1 \) ile bölümünden kalan \( K(x) \) olduğuna göre, \( K(0) \) kaçtır?

Kalan polinomunu bulmak için bölen polinomunu sıfıra eşitleyip en yüksek dereceli terimi yalnız bırakalım.

\( x^2 + x + 1 = 0 \)

\( x^2 = -x - 1 \)

Her iki tarafı \( x \) ile çarpalım.

\( x^3 = -x^2 - x \)

\( x^2 \) yerine \( -x - 1 \) yazalım.

\( x^3 = -(-x - 1) - x \)

\( x^3 = 1 \)

\( P(x) \) polinomunda \( x^3 = 1 \) yazarak \( K(x) \) polinomunu bulabiliriz.

\( K(x) = 7(x^3)^{11} + 2(x^3)^4 \cdot x + (x^3)^2 - 4x^3 \cdot x + 5 \)

\( = 7(1)^{11} + 2(1)^4 \cdot x + (1)^2 - 4(1) \cdot x + 5 \)

\( = 7 + 2x + 1 - 4x + 5 \)

\( = -2x + 13 \)

\( K(0) = -2(0) + 13 = 13 \) bulunur.


SORU 29 :

\( P(x) \) polinomunun \( x^3 - 1 \) ile bölümünden kalan \( x^2 - 2ax + b \) polinomu, \( x^2 + x + 1 \) ile bölümünden kalan \( -3x + 1 \) polinomudur.

Buna göre \( a + b \) kaçtır?

\( x^3 - 1 \) polinomunu çarpanlarına ayıralım.

\( x^3 - 1 = (x - 1)(x^2 + x + 1) \)

Soruda verilen bölme işlemlerini yazalım.

\( P(x) = (x - 1)(x^2 + x + 1)Q_1(x) + x^2 - 2ax + b \)

\( P(x) = (x^2 + x + 1)Q_2(x) - 3x + 1 \)

Dikkat edilirse \( x^2 + x + 1 \) çarpanı iki bölme işleminde de ortaktır.

Buna göre birinci bölme işleminde \( x^2 = -x - 1 \) yazdığımızda elde edeceğimiz kalan, ikinci bölme işleminin kalanına eşit olmalıdır.

\( (-x - 1) - 2ax + b = -3x + 1 \)

\( (-2a - 1)x + b - 1 = -3x + 1 \)

İki polinomun eşitliğinde dereceleri aynı olan terimlerin katsayıları ve sabit terimler ayrı ayrı birbirine eşittir.

\( -2a - 1 = -3 \Longrightarrow a = 1 \)

\( b - 1 = 1 \Longrightarrow b = 2 \)

\( a + b = 1 + 2 = 3 \) olarak bulunur.


SORU 30 :

\( P(x) = x^{47} - 3x^{16} + x - 2 \) polinomunun \( x^2 - x + 1 \) ile bölümünden kalan kaçtır?

\( x^3 + 1 = (x + 1)(x^2 - x + 1) \)

Yukarıdaki özdeşliğe göre \( x^2 - x + 1 \) polinomu \( x^3 + 1 \) polinomunun bir çarpanıdır.

Buna göre, \( P(x) \) polinomunun \( x^2 - x + 1 \) polinomuna bölümünden kalan, \( P(x) \)'in \( x^3 + 1 \) polinomuna bölümünden kalanın \( x^2 - x + 1 \) polinomuna bölümünden kalana eşittir. Sayılar arasındaki bölme işleminden bir örnek vermemiz gerekirse, 1345 sayısının 15'e bölümünden kalan, 1345'in 15'in bir katı olan 150'ye bölümünden kalanın (145) 15'e bölümünden kalana eşittir.

Dolayısıyla daha sade bir polinomun \( x^2 - x + 1 \) ile bölümünden kalanı bulmak için, önce polinomun \( x^3 + 1 \) ile bölümünden kalanı bulalım.

\( P(x) \) polinomunun \( x^3 + 1 \) polinomuna bölümünden kalanı bulmak için \( x^3 + 1 = 0 \) eşitliğinden \( x^3 = -1 \) yazalım.

\( K(x) = (x^3)^{15}x^2 - 3(x^3)^5x + x - 2 \)

\( = (-1)^{15}x^2 - 3(-1)^5x + x - 2 \)

\( = -x^2 + 3x + x - 2 \)

\( = -x^2 + 4x - 2 \)

Buna göre \( P(x) \) polinomunun \( x^3 + 1 \) ile bölümünden kalan \( -x^2 + 4x - 2 \) polinomudur.

Bu polinomun \( x^2 - x + 1 \) polinomuna bölümünden kalanı bulmak için \( x^2 - x + 1 = 0 \) eşitliğinden \( x^2 = x - 1 \) yazalım.

\( -(x - 1) + 4x - 2 = 3x - 1 \) bulunur.


SORU 31 :

\( P(x) = x^{1881} + x^{1938} \) polinomunun \( x^4 + x^3 + x^2 + x + 1 \) polinomu ile bölümünden kalan kaçtır?

Verilen polinom bölme işlemini yazalım.

\( x^{1881} + x^{1938} = (x^4 + x^3 + x^2 + x + 1) \cdot B(x) + K(x) \)

Eşitliğin her iki tarafını \( (x - 1) \) ile çarpalım.

\( (x^{1881} + x^{1938})(x - 1) = (x^4 + x^3 + x^2 + x + 1)(x - 1) \cdot B(x) + K(x)(x - 1) \)

\( x^n - 1 = (x - 1)(x^{n - 1} + \ldots + x^2 + x + 1) \) özdeşliğini kullanalım.

\( (x^{1881} + x^{1938})(x - 1) = (x^5 - 1) \cdot B(x) + K(x)(x - 1) \)

Eşitliğin solundaki polinomun \( x^5 - 1 \) ile bölümünden kalanı bulmak için eşitlikte \( x^5 = 1 \) yazabiliriz.

\( (x^{1880}x^1 + x^{1935}x^3)(x - 1) = (1 - 1) \cdot B(x) + K(x)(x - 1) \)

\( (1 \cdot x + 1 \cdot x^3)(x - 1) = K(x)(x - 1) \)

\( K(x) = x^3 + x \) olarak bulunur.


« Önceki
Polinomlarda Bölme İşlemi
Sonraki »
Polinomların Çarpanları ve Sıfırları


Faydalı buldunuz mu?   Evet   Hayır